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ABSTRACT

Solar flare prediction studies have been recently conducted with the use of Space-Weather MDI
(Michelson Doppler Imager onboard Solar and Heliospheric Observatory) Active Region Patches
(SMARP) and Space-Weather HMI (Helioseismic and Magnetic Imager onboard Solar Dynamics Ob-

servatory) Active Region Patches (SHARP), which are two currently available data products containing
magnetic field characteristics of solar active regions. The present work is an effort to combine them
into one data product, and perform some initial statistical analyses in order to further expand their
application in space weather forecasting. The combined data are derived by filtering, rescaling, and

merging the SMARP with SHARP parameters, which can then be spatially reduced to create uniform
multivariate time series. The resulting combined MDI-HMI dataset currently spans the period between
April 4, 1996, and December 13, 2022, and may be extended to a more recent date. This provides

an opportunity to correlate and compare it with other space weather time series, such as the daily
solar flare index or the statistical properties of the soft X-ray flux measured by the Geostationary
Operational Environmental Satellites (GOES). Time-lagged cross-correlation indicates that a relation-
ship may exist, where some magnetic field properties of active regions lead the flare index in time.

Applying the rolling window technique makes it possible to see how this leader-follower dynamic varies
with time. Preliminary results indicate that areas of high correlation generally correspond to increased
flare activity during the peak solar cycle.

Keywords: Solar active regions (1974) — Solar magnetic fields (1503) — Space Weather (2037) — Solar
Flares (1496) — Solar x-ray flares (1816) — Solar observatories (1513) — Geostationary
satellites (647) — X-ray detectors (1815) — Astronomy databases (83) — Astrostatistics
(1882) — Algorithms (1883) — Time series analysis (1916) — Linear Regression (1945)

1. INTRODUCTION

The study of the magnetic field properties in solar active regions (ARs) helps to increase our understanding of the
magnetic activity of the Sun, from global solar cycle-long trends and processes to fast, minute-scale energy releases.
The latter is of special importance due to its space weather implications. The free magnetic energy stored in the
non-potential fields of ARs can be transformed into radiation in a wide range of wavelengths, the kinetic energy of the

coronal mass ejections, and the energy of sub-relativistic solar energetic particles (Aschwanden et al. 2017), which all
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have different implications for the terrestrial environment (Buzulukova & Tsurutani 2022). This, therefore, makes the
studies of the magnetic field properties of ARs important for advancing both fundamental and applied solar physics.
Space-based observations of solar photospheric magnetic fields with the Michelson Doppler Imager onboard Solar and

Heliospheric Observatory (SOHO/MDI, Scherrer et al. 1995) and the Helioseismic and Magnetic Imager onboard Solar
Dynamics Observatory (SDO/HMI, Scherrer et al. 2012) enabled the continuous monitoring of the line-of-sight (LoS)
magnetic fields, with almost unchanged over time quality of observations for each instrument. Space-Weather MDI
Active Region Patches (SMARP) and Space-Weather HMI Active Region Patches (SHARP) are two data products
derived from these observations, which include maps and summary parameters of automatically tracked solar ARs.
These parameters are used as metadata to query the database, and are frequently referred to as “keywords” in primary
sources (Bobra et al. 2014, 2021). These data products are developed, and maintained at the SDO Joint Science
Operations Center (JSOC), Stanford University. The specific data series utilized in this work, mdi.smarp cea 96m
and hmi.sharp cea 720s, are derived from photospheric magnetic field maps in the Lambert cylindrical equal-area
coordinates, at 96-minute and 12-minute cadences, respectively. SMARP keywords are based on data from SOHO/MDI
and cover the period from April 23, 1996 to October 27, 2010. SHARP keywords are based on data from SDO/HMI
and cover the period starting May 1, 2010 onward. Together, these data products span more than two Solar Cycles.
In the context of forecasting space weather events, numerous works have relied on the SMARP and SHARP keywords,

or their derivatives. Bobra & Couvidat (2015) were among the first to study the forecasting of M- and X-class solar
flares using machine learning, with support vector machines (SVMs) as classifiers. Thirteen SHARP keywords were
chosen as input parameters, for the observational period from 2010 to 2014, corresponding to some 1.5 million active

region patches. Relatively high predictive scores were obtained, with a True Skill Score (TSS) of 0.761 ± 0.039,
and a Heidke Skills Score HSS2 of 0.636 ± 0.037 in the operational regime. Similar TSS scores were obtained by
Bobra & Ilonidis (2016) when using an SVM-based algorithm, with SHARP keywords and Geostationary Operational
Environmental Satellite (GOES) X-ray flux as input features, to forecast CMEs produced by M- or X-class flares.

SHARP data were especially extensively used for solar flare forecasting (e.g., Liu et al. 2019; Chen et al. 2019; Wang
et al. 2020, and many others). Recently, both SHARP (e.g., Sadykov et al. 2021; Abduallah et al. 2022) and SMARP
(Kasapis et al. 2022) data products were used separately to forecast Solar Energetic Particle events (SEPs).

One of the challenges in studies of AR properties and their relations to solar transient events is the homogeneity
of the observations. Although the number of research attempts trying to predict solar transients is growing, these
are typically based on the SDO/HMI vector magnetograms, and limited to Solar Cycle 24, with the exception of

some works (e.g., Falconer et al. 2011; Huang et al. 2018; Sun et al. 2022, etc.). In relation to space weather, it
becomes clear that, in order to construct a validated forecast and argue about its applicability to operations, one has
to consider conditions that are not limited to the Solar Cycle 24. As an example, the recent work by Ali et al. (2023)
demonstrated, although based on GOES observations, that the SEP forecasting model trained on the Solar Cycle 24

data demonstrates lower performance with respect to models trained on either of the preceding solar cycles. In such
cases, the usage of the LoS magnetic field data spanning two solar cycles becomes an appropriate necessity.
The overlap in high-quality MDI and HMI observations from May 1, 2010 to October 28, 2010, provides an oppor-

tunity to re-scale and merge the SHARP and SMARP data products. The motivation for this work is, by using the
overlapping observations, to cross-calibrate these data products and create one continuous data series that can be used
with machine learning tools and for statistical analysis, with the primary focus on forecasting space weather events,
including solar flares, coronal mass ejections (CMEs), and solar energetic particle events (SEPs). The paper is struc-
tured as follows: Section 2 describes the data cross-calibration, which includes the data preparation, reduction, and
rescaling steps. Section 3 describes the preliminary analysis of the time-lag correlations of the derived homogeneous
descriptors with the daily flare index and soft X-ray flux measured by GOES. The results of the analysis are discussed

in Section 4 and are followed by conclusions in Section 5.

2. DATA PREPARATION

The SHARP and SMARP parameters (keywords) used in the present work are summarized in Table 1. Prior to
merging the keywords, rescaling is applied to the following, which are also the primary focus of this study: USFLUXL,
MEANGBL, R VALUE, CMASKL, MEANGBZ, and USFLUXZ. It is also worth noting, that all of the keywords listed
in Table 1 are present in both SHARP and SMARP data series, with the exception of UNIX TIME, MEANGBZ,
and USFLUXZ, which are derived here. For a more detailed description of SHARP and SMARP keywords and
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Table 1. Summary of SHARP and SMARP parameters (keywords) used in the present work

Keyword Description Units Data Type

T OBS Nominal date and time of the observation, TAI hr:min:sec datetime

UNIX TIME∗ T OBS expressed as time elapsed since Unix epoch days double

ARPNUM1 The number of the active region patch number int

NOAA AR NOAA active region number that best matches this ARPNUM1 number int

NOAA ARS List of all NOAA active regions matching this ARPNUM number varchar

CAR ROT Carrington rotation number of CRLN OBS number int

USFLUXL† Total line-of-sight unsigned magnetic flux Maxwells double

R VALUE†2 Unsigned flux near polarity inversion lines Maxwells double

MEANGBL†3 Mean value of the line-of-sight field gradient Gauss/Mm double

USFLUXZ∗†4 Vertical component of the total unsigned flux Maxwells double

MEANGBZ∗†5 Mean value of the vertical field gradient Gauss/Mm double

CMASKL† CEA (cylindrical equal-area) pixels in the active region number double

LAT FWT Stonyhurst latitude of flux-weighted center of active pixels degree float

CRLT OBS Carrington latitude of the observer degree float

LON FWT Stonyhurst longitude of flux-weighted center of active pixels degree float

CRLN OBS Carrington longitude of the observer degree float

CDELT1 Map scale in X direction degree/pixel float

DSUN OBS Distance from SoHO/SDO to center of the Sun meters double

RSUN OBS Observed angular radius of the Sun arcsec double

QUALITY Quality index none int/hex

* denotes keywords that are derived in this work, and are not present in the original data series.
† denotes keywords whose SMARP values are here re-scaled, prior to merging with SHARP.
1 This is called “TARPNUM” in SMARP, and “HARPNUM” in SHARP; renamed here for consistency.
2 Recomputed here as the common antilogarithm of the R VALUE.
3 Units converted from Gauss/pixel to Gauss/Mm.
4,5 See eq 1 and 2 for derivation.

corresponding formulae, the reader is referred to Table 1 in Bobra et al. (2014), Table 1 in Bobra & Couvidat (2015),
and Tables 3 and A.8 in Bobra et al. (2021).

2.1. Data Processing

The data are retrieved from the Joint Science Operations Center (JSOC) database using the Lookdata tool, accessed
through the JSOC web portal1. The initial processing step is to convert the JSOC tab-delimited text files into UTF-8
.csv format. Then, the HMI SHARP .csv keyword data files are imported from a specified source directory, along with
the MDI SMARP .csv file, any duplicate records from both data series are removed, and SMARP MEANGBL units
are converted from Gauss/pixel to Gauss/Mm. For both SHARP and SMARP, the R-value is recomputed by finding

the common antilogarithm of the original R-value. Additional filtering is applied to exclude any records corresponding
to the Stonyhurst coordinates below -65 and above +65 degrees longitude, in order to avoid the effect of observational
distortion near the limb. Low-quality observables are further filtered out based on the QUALITY keyword, which is
discussed in Bobra et al. (2021). SHARP records corresponding to QUALITY ≥ 65,536 (10,000 in hexadecimal) and
SMARP records corresponding to QUALITY ≥ 262,144 (40,000 in hexadecimal) represent unreliable Stokes vectors
and are therefore excluded. This can also be done at the query stage, using the DRMS Python package.2

1 http://jsoc.stanford.edu/
2 See, for example: https://github.com/mbobra/SMARPs/blob/main/paper/Figure2.ipynb

http://jsoc.stanford.edu/
https://github.com/mbobra/SMARPs/blob/main/paper/Figure2.ipynb
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The vertical components of the unsigned flux (Φz) and the mean magnetic field gradient (| ∇Bz |) are absent in the
SMARP data series because the MDI instrument did not observe the transverse magnetic field components. Therefore,
we derive them from the line-of-sight (LoS) parameters as follows:

Φz =
ΦLoS

cos(φc − β0) · cos(λc)
(1)

| ∇Bz | = | ∇BLoS |
cos(φc − β0) · cos(λc)

(2)

where φc and λc are, respectively, the Carrington latitude and longitude of the flux-weighted center of the active pixels,
and β0 is the Carrington latitude of the solar disk center relative to the observer.
In the second stage, the six aforementioned SMARP keywords are rescaled using predetermined parameters (Section

2.3), and the SMARP keywords are merged with their corresponding SHARP keywords at May 1, 2010, 00:00:00,
which is the earliest date for which hmi.sharp cea 720s records are available. As a third and final step, all records
are grouped by time stamp, data reduction, and integration are performed (Section 2.2), gaps in observations are
represented using NaN values, and the output is exported in a comma-separated format.

2.2. Data Reduction and Integration

The SHARP and SMARP parameters are not one continuous time series, but a collection of time series (one for

each solar active region). In the present work, they are converted into true two-dimensional arrays using two different
methods. The first method involves selecting time slices corresponding to R-value maxima, regardless of their active
region number; that is, for each time stamp, the record with the highest R-value is chosen regardless of its location on

the Sun, and only the keyword values corresponding to that record are included in the reduced time series. R-value
is the total weighted unsigned flux density within 15 Mm of strong-field, high-gradient polarity separation lines, and
has been associated with a high probability of initiation of M- and X-class flares (Schrijver 2007). The second method

involves integrating the keywords over the entire solar disc: for each time stamp, the keyword values are summed,
regardless of their coordinates or active region number. With the latter method, the ±65◦ limb truncation is not
applied to the keywords, in order to match them with GOES-15 soft X-ray data, which are not coordinate-specific.

2.3. Determination of Rescaling Parameters

The fusion of SHARP and SMARP parameters was previously attempted using basic Z-score standardization
(Sun et al. 2022), though here we present a novel approach. Ten prominent ARs in the SHARP-SMARP overlap

period are selected, with the following NOAA numbers: 11087, 11089, 11092, 11093, 11101, 11106, 11108, 11109,
11112, and 11113. The criteria for their selection are: the peak unsigned flux, the sum of the unsigned flux, the
duration of observation, and data quality. It is possible, by changing the selection criteria, to arrive at a different set
of ARs, and obtain somewhat different rescaling parameters; however, this difference should not be very significant,
and addressing it is beyond the scope of the present work.
For each of the aforementioned ARs, correlating the data involves time-matching each SMARP record with the

nearest SHARP record within a ±13 minute sensitivity window. If no such record is found, the data point is dropped.
The remaining time-matched SHARP and SMARP values are then plotted against each other (Figure 1), and linear
regression is performed using Ordinary Least Squares (OLS) and Total Least Squares (TLS) methods, of which only
the latter is used for rescaling in the present work. The procedure for calculating the Standard Deviation of the
Slope (SDS) for TLS regression is based on the work by Tellinghuisen (2020), where it is covered in some detail. The
Standard Error (RSE) for TLS is computed here as follows:

RSETLS =

√√√√√√
n∑

i=1

(yi − b−mxi)
2

(n− 2) (1 +m2)
(3)
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Figure 1. The R VALUE for NOAA active region 11087 plotted as a time series (panel a) and on a scatter diagram (panel b),
with the OLS first-order polynomial regression as a solid red line, and TLS as a green line. The slope, RSE and SDS for both
regression methods are also shown.

Finally, the rescaling parameters (slope and intercept) for each of the ten ARs are tabulated, and their weighted
averages are determined for each keyword, using the formula:

µ′ =
∑(

xi

σ2
i

)[∑(
1

σ2
i

)]−1

(4)

2.4. GOES X-ray Data and the Daily Flare Index

The daily flare index is given in units of Joule/m2, and is calculated from the NOAA Solar and Geophysical Activity
Summary data3, as a sum of the product of GOES X-ray flare magnitude and duration, for all C, M, and X-class flares
during a day. Flares corresponding to the Stonyhurst longitudes below -65 and above +65 degrees were excluded from
the calculation.
The present study also utilizes 1-minute averaged GOES-15 Soft X-ray data, which are here time-matched with

disc-integrated 12-minute SHARP time series, creating a high-cadence data product for the period from September 1,
2010, to March 23, 2017, encompassing the majority of Solar Cycle 24. The data represent the measurement of the
Soft X-ray flux in the 1-8 Å wavelength range (only the long channel of GOES is used for the analysis) averaged over
one minute of the observations. The original data are available at the National Center for Environmental Information
archive4 by the National Oceanic and Atmospheric Administration (NOAA).

3 https://www.swpc.noaa.gov/products/solar-and-geophysical-activity-summary
4 https://www.ngdc.noaa.gov/stp/satellite/goes/

https://www.swpc.noaa.gov/products/solar-and-geophysical-activity-summary
https://www.ngdc.noaa.gov/stp/satellite/goes/
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Figure 2. Time-Lagged Cross Correlation between selected daily-averaged merged SMARP-SHARP keywords (Table 1) the
daily flare index, with the correlation coefficient on the vertical axis, and time lags (representing 1-day offsets) are marked at
10-day intervals on the horizontal axis. The zero offset condition is marked by a vertical line for reference. Left-hand offsets
indicate the displacement of the flare data earlier in time with respect to the keyword.

3. DATA ANALYSIS

3.1. Time-Lagged Cross-Correlation

The Pearson correlation coefficient (PCC) (Pearson 1896) alone is not sufficient to establish causality (Wiedermann
& Eye 2016, p. 64). However, it is well-known that large-scale flaring ARs are associated with magnetic flux emergence

(Toriumi et al. 2017; Toriumi & Wang 2019; Toriumi 2022; van Driel-Gesztelyi & Green 2015). In addition, various
SHARP and SMARP parameters, including the total unsigned flux and R-value, are shown to have high predictive
capability in various machine learning models (Bobra & Couvidat 2015; Kasapis et al. 2022; Deshmukh et al. 2022a,b;

Pham et al. 2019; Sinha et al. 2022). Here, we take a statistical approach.
Time-lagged cross-correlation (TLCC) involves calculating the PCC score on time series, which have been offset with

respect to one another by a certain number of time lags. If increased amplitude in the SHARP-SMARP parameters
consistently precedes increases in flare activity, this would be indicated in the TLCC profile by a non-centered cor-
relation maximum, offset by the average lead time. In this study, 50 positive 1-day time lags, and 50 negative 1-day
time lags are introduced between each of the daily-averaged SHARP-SMARP parameters and the daily flare index.
For each time lag, the PCC score is computed using Matlab’s corr() function, which ignores any NaN-containing pairs
when the “ ’rows’,’complete’ ” option is set; therefore, data interpolation is not necessary. Positive lags mean that the
flare index was delayed in time relative to a keyword, and negative lags mean that it was ahead in time relative to the
keyword, by the number of days indicated on the horizontal axis (Figure 2). This technique forms the basis for our
first TLCC analysis.
In the second TLCC analysis, the same technique is applied to time-matched 12-minute SHARP data and GOES-15

1-minute averaged soft X-ray long-wavelength data. In this case, we use logarithmic values in order to compensate
for the large discrepancy on the numerical scale between the data from the GOES X-ray detectors and the HMI

instrument. The correlation scores are computed for ±1200 12-minute lags, representing a maximum offset of 10 days
in each time direction. The purpose here is two-fold: to allow the visualization of the high-correlation portion of the
profile in more detail and secondly, to examine the TLCC between two minimally-processed datasets, related to those



7

-1000 -500 0 500 1000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

P
C

C

USFLUXL

Maximum:  0.75643 ,  0.16667  days

C
en

te
r 

=
 0

.0
5 

da
ys

-1000 -500 0 500 1000
0.44

0.46

0.48

0.5

0.52

0.54

0.56

MEANGBL

Maximum:  0.55605 ,  -0.4  days

C
en

te
r 

=
 -

0.
05

8 
da

ys

-1000 -500 0 500 1000
0.3

0.4

0.5

0.6

0.7

P
C

C

R_VALUE

Maximum:  0.69039 ,  0.10833  days

C
en

te
r 

=
 -

0.
1 

da
ys

-1000 -500 0 500 1000
0.5

0.55

0.6

0.65

0.7

0.75
CMASKL

Maximum:  0.71157 ,  0.59167  days

C
en

te
r 

=
 0

.0
5 

da
ys

-1000 -500 0 500 1000
Time Lag (12-min intervals)

0.44

0.46

0.48

0.5

0.52

0.54

0.56

P
C

C

MEANGBZ

Maximum:  0.55818 ,  -0.21667  days

C
en

te
r 

=
 0

.0
08

 d
ay

s

-1000 -500 0 500 1000
Time Lag (12-min intervals)

0.45

0.5

0.55

0.6

0.65

0.7

0.75
USFLUXZ

Maximum:  0.73365 ,  0.075  days

C
en

te
r 

=
 0

.0
67

 d
ay

s

Figure 3. Time-lagged cross-correlation between GOES-15 X-ray and HMI SHARP keywords, showing the magnitude and
offset of each TLCC maximum (printed in the top-right corner of each subplot) as well as the statistical center of each curve,
marked by a vertical red line. The horizontal scale shows the number of offsets in 12-minute lags. Left-hand offsets indicate the
displacement of the GOES-15 data earlier in time with respect to the keyword.

used in the first analysis. Using a shorter offset frame also allows for a meaningful calculation of the statistical center
of the curve (Figure 3).

3.2. Rolling Window Time-Lagged Cross-Correlation

While the TLCC method gives the average representation of the time-lagged cross-correlation profile between two
signals, it does not show how this interaction varies with time. In order to examine this temporal variation, it is
necessary to split the time-matched signal pair into consecutive data segments, or bins, and repeat the TLCC method

for each bin. This can be done in one of the following two ways: the first involves performing the TLCC on non-
overlapping sequential data bins, whereas the second involves repeating the TLCC analysis by offsetting the data bins
incrementally by one data point, which corresponds to the cadence time interval. In the latter case, there will be

overlap between consecutive bins: this technique is referred to as the Rolling-Window Time-Lagged Cross-Correlation
(RWTLCC). Both of these methods can be used in order to investigate how the leader-follower relationship varies with
time - the main difference is that the RWTLCC method allows for a more detailed visualization (Cheong 2022) and,
thus, is the method used in the present work.
In the first RWTLCC analysis, the rolling-window technique is applied to the time-matched daily-averaged SHARP-

SMARP data and the daily flare index, which is the same data referred to in Section 3.1. The data are divided into
9630 consecutive one-day bins, and for each bin, the TLCC is calculated with ±50 one-day offsets in each direction,
as was done with the TLCC method (Section 3.1). The resulting plot is illustrated in Figure 4.

4. DISCUSSION

The parameters used to perform the cross-calibration between the SMARP and SHARP keywords are shown in
Table 2. One limitation of the present work is that the rescaling involved using both the slope and the intercept, which
resulted in some negative values in R VALUE and USFLUXZ, although in most cases, the intercept was close to the
origin, as expected. It is also possible to force the linear regression to pass through the origin, or to apply a non-linear

regression technique, which may be an objective of future work.
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Figure 4. Rolling-Window Time-Lagged Cross-Correlation between selected daily-averaged merged SMARP-SHARP parame-
ters: a) USFLUXL (Total line-of-sight unsigned magnetic flux), b) MEANGBL (Mean value of the line-of-sight field gradient),
c) R VALUE (Unsigned flux near polarity inversion lines), and the daily flare index, with the correlation coefficient indicated
by the color bar on the right, and time lags on the horizontal axis, at 25-day intervals. The zero offset condition is marked
using vertical lines for reference. As in Figure 2, left-hand offsets indicate the displacement of the flare data earlier in time with
respect to the keyword.

Table 2. Cross-calibration parameters and statistics.

Keyword µ′ m µ′ b µ RSE µ SDS

(1) (2) (3) (4) (5)

USFLUXL 1.437776 -9.34e+20 7.85e+20 0.082171

MEANGBL 0.579888 -0.322213 1.712718 0.022702

R VALUE 0.471202 109.1307 1641.057 0.037700

CMASKL 0.909633 -2437.092 8120.222 0.055187

MEANGBZ 0.637121 -3.756285 2.426127 0.030094

USFLUXZ 0.793795 1.34e+21 1.74e+21 0.317932

Note—For each keyword in column 1, the weighted mean
slope(2) and weighted mean intercept(3) are given, along
with the mean residual standard error(4) and the mean stan-
dard deviation of the slope(5) using the TLS method.
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4.1. Time-Lagged Cross-Correlation

TLCC is used in order to establish if a leader-follower relationship exists between two time series, and if so, which
time series leads this relationship. In the first TLCC analysis (Figure 2), the peak correlation between the merged
SHARP-SMARP keywords and the daily flare index generally occurs at the zero-day offset, which implies that there is
no distinct and consistent lead time beyond the 1-day time frame. Notably, a left-hand peak offset and asymmetry are
evident with MEANGBL. To a lesser extent, there is also asymmetry with R VALUE and MEANGBZ, which indicates
that a leader-follower dynamic may exist, where these three keywords lead the flare index overall. With the other three
parameters (USFLUXL, CMASKL, and USFLUXZ) this peak asymmetry is less pronounced but still indicative of a
difference between the lead-up time and the follow-up time. The large secondary peaks seen at around the +27 day
mark suggest that many ARs are still showing signs of activity after passing through one Carrington rotation. Overall,
the TLSS profiles show increased correlation within ±10 days of the offset reference point, with the peak occurring at,
or just prior to it. The parameter exhibiting the highest peak correlation with the flare index is R VALUE, followed
by, in descending order: USFLUXZ, USFLUXL, MEANGBZ, MEANGBL, and CMASKL. There are two reasons for
the low overall correlation scores in this first TLCC analysis: scale disparity between the flare index and the keywords,
and noise. Log10 was not applied, because it would result in imaginary numbers where the keyword values become
negative as a consequence of SMARP rescaling. Addressing this limitation is outside the scope of the present work
because it is not concerned with different rescaling methods.
One limitation of using one-day averages is the low cadence, making it difficult to identify a prominent peak should it

occur within ±1 day from the zero offset reference point. We attempt to address this with the second TLCC analysis,

employing 12-minute SHARP data time-matched with GOES-15 1-minute averages. The result (Figure 3) shows much
higher overall correlation scores between the keywords and flare activity than was the case in the first TLCC analysis.
This is largely due to applying Log10 to the data, which was not done prior to the first analysis. Interestingly, the

same keywords indicate a lead time in both analyses: MEANGBL, R VALUE, and MEANGBZ. In Figure 3, only
MEANGBL and MEANGBZ show prominent left-hand peak offsets of -0.4 and -0.2 days respectively, and along with
R VALUE, show a left-hand offset of the statistical center of the TLCC curve, although it is not greater than ±0.1
days for any of the six curves. As seen from the first TLCC analysis, and is to be seen from the RWTCLL analysis, this

is indeed suggestive of the situation where there is no distinct, immediate, and consistent leader-follower relationship
between solar flare activity and the solar magnetic field parameters studied here. This result is largely in agreement
with those reported by Whitney Aegerter et al. (2020), Teh (2019), and Teh & Kamarudin (2021).

4.2. Rolling Window Time-Lagged Cross-Correlation

A predictable offset between two time series is expected to result in a prominent peak in the TLCC profiles, although

so far this has not been the case. Therefore, the next step is to investigate how the TLCC profiles vary with time,
and whether this variation itself exhibits a discernible pattern. As seen in Figure 4, the three depicted RWTLCC
correlation profiles are quite similar, although there are many detailed differences, the analysis of which for all six
keywords is beyond the scope of this work. Generally, however, it supports the hypothesis that there are time intervals
where the keywords lead the flare index, and others where the flare index leads the keywords. As active regions rotate
onto the observed solar disc, some of them may already be erupting, while others may transit it, and erupt on the
western limb. Notably, there are many instances in Figure 4, when the peak correlation is offset from zero by ±10
days, which roughly corresponds to the AR transit time. This is consistent with the first TLCC analysis (Figure 2).
However, there are many instances, where the peak correlation score is substantially greater in Figure 4 than it is in
Figure 2, as expected.
Time intervals containing high peak-correlation values are perhaps the most intriguing aspect of the RWTLCC

analysis so far, and it can be hypothesized that they may correspond to peak flare activity. As already mentioned,
there are many similarities between the RWTLCC plots of the keywords in Figure 4 (as well as the three not shown)
therefore, their average may serve as a representative proxy for a preliminary test of this hypothesis. Computing the
arithmetic mean of the six RWTLCC matrices and plotting them opposite of the daily flare index results in Figure 5,
which suggests that time intervals with higher correlation peaks generally correspond to increases in C-X class solar
flare activity, regardless of the exact location of these peaks with respect to zero.
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Figure 5. The daily flare index (left) and the average of the RWTLCC profiles of the six keywords in Table 2. The correlation
coefficient is indicated by the color bar on the right, and time lags are labeled on the lower right-hand scale, at 25-day intervals.
As in Figure 4, the zero offset condition is marked using a vertical line for reference, and left-hand offsets indicate the displacement
of the flare data earlier in time with respect to the keyword.

5. CONCLUSIONS

The most significant aspects of this work include rescaling and merging selected SHARP and SMARP magnetic field
parameters (“keywords”) using the TLS regression technique, and performing time-lagged cross-correlation in order
to investigate the lead time between these parameters and solar flare activity. A consistent offset in the TLCC and
RWTLCC profiles would show if there is an optimal flare forecasting window and if any keywords serve as potential
flare precursors. One conclusion from this study is that in some cases, the keyword leads the flare, but sometimes
the opposite is true. One possible explanation for this is that some active regions continue to erupt after the initial

event. Another conclusion is that some keywords may serve as better precursors, for example, MEANGBL, whose
offset TLCC peak can be accounted for by noise to some extent, but the strong peak asymmetry cannot. Furthermore,
the RWTLCC results for the six keywords lead to the hypothesis that areas of high correlation generally correspond
to increased flare activity during the peak solar cycle.
One apparent limitation of the flare data is the reliance on only C-X class flares. This may distort the cross-correlation

profiles to some extent and introduce large gaps, especially during solar minima. In general, there are flares during
solar “quiet” periods; however, the problem is exacerbated when applying the longitude truncation at ±65◦, which
results in the exclusion of approximately 7% of C-X class flares from the original dataset. There is some discrepancy
in the literature regarding the size of the longitude window corresponding to the acceptable HMI signal-to-noise ratio:
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it is reportedly ±70◦ from the central meridian in Bobra & Couvidat (2015) and Abduallah et al. (2023), although
Lee et al. (2020), and Yi et al. (2021) use ±60◦.
Different studies use different criteria for space weather forecasting and for parameter (“feature”) ranking. In the

present study, no attempt is made to predict space weather; however, we demonstrate that the mean value of the
line-of-sight field gradient (MEANGBL) and the mean value of the vertical field gradient (MEANGBZ) may have
some value in forecasting C-X class flares. Most machine learning studies exclude MEANGBZ, because it received
a low Fisher score in Bobra & Couvidat (2015), though it must be kept in mind, that in that particular work, as
well as many others, feature ranking is based on a 24-hour prediction window. It is perhaps unsurprising, that other
workers also reported relatively low scores for MEANGBZ (Liu et al. 2019; Wang et al. 2019; Zhang et al. 2022), while
MEANGBL and CMASKL are rarely mentioned at all.
In many current machine learning models, the best-performing predictors are, in no particular order: total unsigned

current helicity (TOTUSJH), total unsigned vertical current (TOTUSJZ), total magnitude of Lorentz force (TOTBSQ),
total photospheric magnetic free energy density (TOTPOT), sum of the modulus of the net current per polarity
(SAVNCPP), absolute value of the net current helicity (ABSNJZH), area of strong field pixels in the active region
(AREA ACR), total unsigned flux (USFLUX), and R VALUE (Jonas et al. 2018; Ma et al. 2017; Hamdi et al. 2017;
Chen et al. 2019; Lee et al. 2020; Lim et al. 2019a,b; Liu et al. 2017; Zheng et al. 2023; Zhang et al. 2022; Vysakh &
Mayank 2023). To date, more than 50 studies utilizing SHARP keywords have been published. Many of them focus
primarily on the development and performance of different machine learning algorithms and tend to overlook SMARP
data. They also tend to consider only a limited number of magnetic field parameters, which is also a limitation in the

present study. Nevertheless, the merged SMARP-SHARP data series are shown to have potential for use in machine
learning applications for forecasting space weather events, including SEP events (Kasapis & et al. 2024, in preparation).
Future work may involve expanding the merged SMARP-SHARP dataset by including additional keywords and

adding B-class flares to the daily flare index. In the second TLCC analysis, it is possible to reduce the 12-minute
SHARP data by choosing time slices corresponding to peak R VALUE. The RWTLCC analysis may be modified by
using the combined SHARP-SMARP keywords downsampled to a uniform 96-minute cadence, and time-matching
them with a 96-minute averaged GOES X-ray flux, which would still allow for a greater level of detail than does the

1-day flare index. One limitation of the GOES X-ray flux, however, is that it is not coordinate-specific, and therefore
difficult to match with any particular active region. Lastly, an RWTLCC analysis between SHARP and GOES-15
X-ray time series may test the hypothesis, that areas of high correlation generally correspond to increased flare activity

during the peak solar cycle.
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